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It is shown how to include free energies not symmetric in the ordering field in a recent Riemannian
geometric theory of critical phenomena [G. Ruppeiner, Phys. Rev. A 44, 3583 (1991)]. A mixing of
coordinates scheme, as is conventionally used to deal with asymmetry, is proved to be consistent with
the geometric theory. Furthermore, with scaled forms of the free energy and the assumption of univer-
sality, this appears to be the only scheme for including asymmetry in this theory which does not intro-

duce a singularity near the critical isochore.

PACS number(s): 05.70. —a, 02.40. —k, 05.40.+j, 64.10.+h

I recently introduced a thermodynamic theory of criti-
cal phenomena based on Riemannian geometry [1]. The
resulting singular part of the scaled free energy near the
critical point is generally in good agreement with known
results for simple critical points. As input one need only
supply the values of the critical exponents. The solution
process of Ref. [1], however, was limited to free energies
symmetric in the ordering field. But asymmetric free en-
ergies appear to have physical importance as well (e.g.,
the pure fluid), and the Riemannian geometric theory
should address this. In this paper I prove that a mixing
of coordinates scheme, as is conventionally used to deal
with asymmetry [2], is consistent with this theory. Fur-
thermore, I show that with scaled forms of the free ener-
gy and the assumption of universality this appears to be
the only scheme for including asymmetry in this theory
which does not introduce a singularity near the critical
isochore.

The Riemannian metric here originated from the ther-
modynamic theory of fluctuations and is constructed
from the second derivatives of the free energy. The re-
sulting theory of critical phenomena is based on this hy-
pothesis: The Riemannian curvature scalar is proportional
to the inverse of the free energy. Though my method
should generalize, I consider only the case of systems
with a single-order parameter m, with conjugate ordering
field A, and a reduced temperature

= TC ’ (1)

where T is the critical temperature [3].

Introduce now the notation of fluctuations and
Riemannian geometry. Consider a finite, open subsystem
A’ of an infinite system 4. A’ has fixed volume V.
Denote the thermodynamic state of 4 by
a =(ay,a,)=(t,h) and the corresponding thermodynam-
ic state of 4’ by a’=(¢',h’). The Gaussian approxima-
tion to the classical thermodynamic fluctuation theory as-
serts that the probability of finding the thermodynamic
state of 4’ between a’ and a’+da’ is [4,5]

P(a,a’)daida}, = ¥y exp —!2—’ 22‘, guwla)ha,Aa,
v=1
XV'g(a)daida) , ()
where Aa, =a, —a,,
gula) == kBlTC aaizafav T kBlTC Lo )
g(a)=det[g,,(a)], 4)

and kjp is Boltzmann’s constant. The comma notation in
Eq. (3) denotes partial differentiation of the free energy
per volume f(¢,h).

The quadratic form

2
(A= 3 g,.(a)Aa,Ad), (5)

uv=1

constitutes a positive-definite Riemannian metric on the
two-dimensional thermodynamic state space of points
with coordinates (z,#) [6]. Physically, the interpretation
for distance between two thermodynamic states is clear
from Eq. (2): the less probable a fluctuation between two
states, the further apart they are.

The metric defines the Riemannian curvature tensor in
terms of derivatives of the free energy. It was argued in
Ref. [1] that the Riemannian curvature scalar R is pro-
portional to the inverse of the free energy per volume
very near the critical point:

kpTc
o

This geometric equation may be written as a third-order
nonlinear partial differential equation [1],

(6)

Fouo Fon Fonm

SFowe Foun Foom

Lo Lo Lonn | 9
fo T 3 —_7 » (7)
f,ht f,hh

934 ©1993 The American Physical Society



47 ASYMMETRIC FREE ENERGY FROM RIEMANNIAN GEOMETRY 935

where I have here used a determinant notation originated
by Janyszek and Mrugala [7] for the thermodynamic cur-
vature.

Consider now a linear transformation of variables,

u=cyt+ecp,h, (8a)

U:C21t+C22h ) (8b)

where the cij’s are constants, with nonzero determinant.

By straightforward computation,
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This proves the theorem that the form of the geometric
equation Eq. (7) is invariant under a linear transforma-
tion of independent variables [8].

This theorem implies that if f(z,4) is a solution to the
geometric equation in (t,h) coordinates, then so is
flettephcqttcyph).  To see  this, substitute
f ey t+cyph, eyt Hcyyh) into the geometric equation in
(t,h) coordinates. Then transform the surrounding equa-
tion to (u,v) coordinates, which, by the theorem, may be
done simply with the substitution t —u and » —v. Final-
ly, transform the arguments of the function f to u and v
by Egs. (8). The form of the resulting equation is formal-
ly identical to the original one, so f (u,v) remains a solu-
tion.

To complete this discussion of invariance, consider a
more general coordinate mixing which includes the free
energy:

u:C”t+Clzh +Cl3f(t,h) ’ (lla)
v=cyt+ecyphteynft,h), (11b)
wlu,v)=cyt+ecph+ces f(Lh), (11¢)

where the coefficients c;; are constants, with nonzero
determinant. I examined the matrices

100 1 01 1 00
c=1010(, |01 1, |00 1]. (12)
111 001 010

None yielded an additional invariance in the sense that
the resulting partial differential equation for w(u,v) has
the same form as Eq. (7) for f(¢t,h).

Let us reflect on the physical meaning of the invariance
under the coordinate change Egs. (8). In the context of
physical applications, there are generally three possible
types of transformations of the geometric equation al-

lowed within a specific universality class: (1) those which
describe a given thermodynamic system in terms of a new
set of thermodynamic variables, (2) those which apply a
given set of thermodynamic variables to a new thermo-
dynamic system, and (3) a combination of these two
transformations. A transformation of the first type usual-
ly changes the form of the geometric equation, but leaves
the boundary conditions effectively the same (consistent
with the original ones). A transformation of the second
type leaves the geometric equation unchanged, but new
boundary conditions are invoked.

These three types of transformations are physically
quite different from each other. Since the invariance
theorem could be applied to any one of these transforma-
tions, it is at this point just mathematical manipulation,
which takes on physical significance only if the context is
specified. The interesting case in this paper are transfor-
mations that occur in connection with scaling and univer-
sality where the free energy has the form

f,h)=t|Y(z) . (13)
Here
z=hlt]"?, (14)

a and b are the constant critical exponents, and Y(z) is
some function. It was shown in Ref. [1] that such a form
of the free energy simplifies the geometric equation to a
third-order nonlinear ordinary differential equation
(ODE) for Y (z), which I shall elaborate on below.

In addition to specifying the form of the free energy for
a given system, scaling and universality deal with how
given thermodynamic quantities transform wunder a
change of thermodynamic systems within a particular
universality class, and this corresponds to coordinate
transformations of type (2). Restricted by the scaling
form Eq. (13), there are three ways to bring about a coor-
dinate transformation of type (2). The first is to drop Eq.
(14) for the relation between z, ¢, and A, but leave the
function Y the same. The second is to stay with Eq. (14),
but change the functional form of Y. The third is to
change both the argument and the functional form of Y.

For the first case, we may use the invariance theorem
above to construct an asymmetric solution to the
geometric equation by a two-step procedure. First, solve
it in coordinates (z,4) where f is symmetric in the order-
ing field [ f (z,h)=f (¢, —h)], by, for example, the method
of Ref. [1]. Next, substitute the coordinate transforma-
tion Egs. (8). The result is

(cyyt+cpoh)

(t,h)=|cy t+c,h|°Y | ————
S 1 12 BWETAL

) (15)

which remains a solution. The change in boundary con-
ditions is reflected through the constants c;;. The general
notion in critical phenomena of such a scheme of mixed
coordinates to extend scaling and universality to deal
with asymmetry is well known, and seems to be accepted
[2,9]. Its prediction of a deviation from the law of recti-
linear diameters has been experimentally verified [10,11].
Consider now the second possibility, changing the
function Y, leaving the dependence between z, ¢, and A



936 GEORGE RUPPEINER 47

fixed by Eq. (14). I shall argue that this does not appear
to yield an acceptable solution since it leads to a singular-
ity near the critical isochore, as I now show.

Substitution of Eq. (13) reduces the geometric equation
Eq. (7) to a third-order nonlinear ODE for Y (z) [1],

_ P.(k,2, Y, Y, Y")
T iz Y, YL Y")

Y3(z) , (16)
where the numerator and denominator on the right-hand
side are polynomial functions of their arguments. This
equation is too lengthy to write out here for general a and
b, but the Appendix shows it for the mean-field theory
(MFT) exponents @ =2 and b = 3.

Assuming that Y (z) is analytic at z =0, it admits a
Taylor series:

Y(z2)=yo+y,z+y,z2+yz3+ - . 17

Because Y (z) is a solution to a third-order ODE, it has
three free constants of integration, which I take as y,, y,,
and y,. In Ref. [1], a symmetric solution was obtained by
setting y; =0. But consider what happens with y ;0.

First, note that the solution to the ODE (16) is regular
at z =0 unless the denominator p,(z,Y,Y’,Y") is zero
there. Substituting the series for Y (z) leads to

24(0,Y(0),Y'(0),Y"(0))=(a —1a(a —b)b—1)ply, ,
(18)

which shows that, barring fortuitous values of the critical
exponents, or the unphysical choice y, =0, the denomina-
tor is not zero at z =0 if y;50. Hence, a Taylor-series
solution method is guaranteed to converge in some neigh-
borhood of z =0.

The case with y, =0 has zero denominator at z =0,
and the only way to get a locally regular solution is to re-
quire that the numerator be zero as well. This obtains re-
gardless of y, and y, if [1]

ala—1)

This value results in a cancellation of a single factor of z
on the right-hand side of Eq. (16), and a regular solution
at z =0.

Turning back to the case with y;50, we must pick a
value for «, which is not now set by a regularity require-
ment at z =0. There are three basic options: (1) regard «
to be universal and given by Eq (19); (2) allow k to vary
with y,, y,, and y,, but go to the expression Eq. (19) in
the limit y; —0; (3) require no consistency with Eq. (19).

Let us explore the first option, which is clearly prefer-
able since it is not thought that the issue of symmetry is
relevant for determining the universality class. Also, the
solution process which lead to the value of «k in Eq. (19)
resulted in a good symmetric free energy; in particular,
the scaled equation of state obtained for the MFT ex-
ponents was exactly what was expected [1]

Start by choosing y,=y, = —1 [12]. The construction
of a series solution in terms of y,; is now immediate.
Table I shows the first few series coefficients for the MFT
exponents. As may be seen, in the limit y, —>0 the
coefficients computed with y,;70 do not converge to
those computed with y; =0. This behavior is representa-
tive of that for other values of a and b, including the
three-dimensional (3D) Ising exponents a =2 and b= 2.
The reason for this qualitative difference is clear; for
y1=0 the cancellation of z’s brings the coefficients y;
down one order on the right-hand side of Eq. (16), result-
ing in a different set of recurrence relations in the series
solution. Physically, a slight asymmetry should be nearly
indistinguishable from the symmetric case; therefore one
of the solutions here must be unphysical, probably the
one with y,70.

For y,; >0 the series coefficients are all negative for i
not too small, provided | y| is not too large, and have al-
ternating sign for y; <0. This means that the closest
singular point for Y (z) should lie on the real z axis, posi-
tive for y, >0 and negative for y, <0. Assuming that
Y (z) has a nearest singularity on the real axis at z,, of the
form

Y(z)= A(z —zy)8, (20)

TABLE 1. The first seven series coefficients computed for the MFT exponents @ =2 and b=% for
both the symmetric and asymmetric solution schemes, with k given by Eq. (19). In the limit y, —0 the
later series coefficients do not approach the former except for i =0, 1,2,3, and, indeed, diverge for i > 5.

i yi (»,=0) yi (y170)
0 -1 —1
1 0 Y1
2 -1 —1
3 o —28y+y}
96y,
4 N —448y, —132y3 +7y3
12 1536y,
s 0 —73728—8224y% —1700y %+ 117p$
61440y,
p L —3538944—992768y2 +35232y% — 11364y ¢ + 689y

737280y2
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FIG. 1. The coefficient ratios y; /y; ., as a function of 1/i for
several values of y,. The graphs are linear, supporting the con-
tention that there is a singularity in Y (z) of the form A (z —z,)8
at z,.

where A4 and g are constants, we expect the ratio of series
coefficients for large values of the index i to be linear in
1/i:

Yi _

Yi—1

ﬂ];#, 1)
Z I Zy

if either g < —1 or g is noninteger [3]. Figure 1 shows
that the series coefficients for the 3D Ising exponents
obey such a relation for a range of values of y,. Table 11
gives z; and g for several y,. It may be seen that for both
MFT and 3D Ising exponents there is a singularity on the
real z axis which approaches z =0 as y, gets smaller [13].
Such a singularity is physically undesirable, however,
particularly for the MFT exponents which result from
models whose underlying assumption is that the free en-
ergy is regular at the critical point. Hence, this method
for including asymmetry appears to be inferior to the
mixing of coordinates scheme.

One may attempt to remove the discontinuity in the
limit y;—0 by adjusting « (and possibly @ and b) to pro-
duce the cancellation of z’s for all values of y,. This re-
quires setting the denominator p; in Eq. (18) to zero at
z =0 for all y,. However, this is clearly impossible for
anything but a few special values of a and b, values which
cannot go smoothly to either the MFT or the 3D Ising
exponents in the limit y,—0. Another possibility,
beyond the scope of this paper, is to abandon entirely the

|

TABLE II. Values of z, and g for several y,. Convergence as
more terms were added to the series was too slow using the ratio
method Eq. (21), so these values were calculated using Padé ap-
proximants. The values for z, are precise, within a digit in the
least significant place; the g’s are harder to calculate, and not
quite as certain.

Y1 29 g
MFT 0.4 0.048 093 2.50
0.3 0.036 588 2.50
0.2 0.024 686 2.49
0.1 0.012452 2.36
0.06 0.007 489 2.21
3D Ising 0.4 0.032 605 2.50
0.3 0.024 659 2.49
0.2 0.016 552 2.43
0.1 0.008 317 2.25
0.06 0.004 996 2.12

solution in Ref. [1] and adjust x and the critical ex-
ponents to remove the singularity at z,. This might pos-
sibly produce an acceptable solution, but probably one
quite different from that of Ref. [1].

The third possible way of constructing an asymmetric
solution, varying both the function Y and its argument,
does not seem to offer much chance of success either be-
cause of the problem with the singularity in Y.

In conclusion, the main result of this paper is the proof
that a mixing of coordinates scheme, as is conventionally
used, is consistent with the Riemannian geometric theory
of critical phenomena. Furthermore, this appears to be
the most plausible scheme for dealing with asymmetry
with this theory, since the natural alternative leads to a
singularity near the critical isochore. Stronger, but
beyond the scope of this paper, would be uniqueness
theorems both for the scaling form of free energy very
near the critical point, and for the uniqueness of the
transformation Eq. (8) for leaving the geometric equation
invariant.

I thank M. E. Fisher and J. J. Rehr for useful
correspondence.

APPENDIX

Equation (A1) is the result of substituting the scaling
form of the free energy Eq. (13) into the geometric equa-
tion Eq. (7) for the MFT exponents. For other values of
the critical exponents a and b, the equation looks similar.

YOUZ)=[(2kY"*+ YY2Y" —32cYY"?Y" + 12kzY"3Y"" —32Y2Y""2+ 128k Y 2Y""?
+24zYY'Y'"?2—96kzYY' Y2+ 18kz2 Y2 Y2 —9z2YY"}) [ Y (8YY' —9zY"2+24zYY" —922Y'Y")] "' . (Al
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